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Scientific Progress

1 Introduction

Ultracold atomic gases have emerged as excellent laboratories for gaining insights into strongly interacting

quantum fluids and correlated quantum materials. During the period funded by ARO, the PI’s have made several important and 

significant theoretical contributions (evidenced by the high profile contributions in PNAS and Physical Review Letters) and 

elucidated the physics of strongly interacting Bose and Fermi gases,

as well as problems at the interface of quantum gases and condensed matter physics, motivated by exciting new experiment 

developments.

The research has built on our complementary strengths of the PIs combining both quantum Monte

Carlo (QMC) simulations and analytical approaches and this has greatly enhanced insights gained form the investigations and 

the value of the publications. Their flexibility and broad range of approches have allowed the PIs to attack the most challenging 

problems raised by new experiments.
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Computational and Theoretical Investigations
of Strongly Correlated Fermions in Optical Lattices

Principal Investigator: Nandini Trivedi
Department of Physics, The Ohio State University, 191 W. Woodruff Ave.,
Columbus, OH 43210. email: trivedi.15@osu.edu Tel: 614 247 7327

Co-Principal Investigator: Mohit Randeria
Department of Physics, The Ohio State University, 191 W. Woodruff Ave.,
Columbus, OH 43210. email: randeria.1@osu.edu Tel: 614 292 2457

Applicant Institution:
The Ohio State University Research Foundation, 1960 Kenny Road, Columbus, OH 43210.

ARO contact: Dr. Paul M. Baker,
Atomic and Molecular Program Manager, Army Research Office,
4300 S. Miami Blvd., Durham, NC 27703-9142
Phone: (919) 549-4202; Fax: (919) 549-4384; E-mail: Paul.M.Baker1@us.army.mil

1. Project Description

The study of strongly interacting Fermi systems using ultracold atomic gases has emerged as a major area
of interdisciplinary research between atomic and molecular physics on the one hand and condensed matter
physics on the other. This joining of hands has led and will lead to new advances in ideas, experiments and
computational methods. In addition to its great intrinsic interest, this research on strongly interacting atomic
gases is also expected to give insights into certain aspects of systems as diverse as high Tc superconductors,
quark-gluon plasmas and color superconductivity in quantum chromodynamics.

There are many routes to achieving strong interactions in atomic gases, including, tuning the interaction
using Feshbach resonances, quenching the kinetic energy via rapid rotation, and enhancing the potential to
kinetic energy ratio using optical lattices. Here we will focus on optical lattices. The last several years have
seen considerable activity in the field of strongly correlated bosons in optical lattices. The fermionic problem
is only beginning to be studied experimentally and promises to be very exciting.

In this theory proposal we focused on addressing the question of strongly interacting fermions in optical
lattices using a combination of quantum Monte Carlo simulations and analytical approaches. We modeled
the systems by an effective low-energy Hamiltonian of the Hubbard form: a single band with an “on-site”
attractive or repulsive interaction. In experiments this can be achieved by using laser fields which generate an
optical lattice and staying far from Feshbach resonances. The lattice problem in the vicinity of a resonance is
likely to involve occupation of higher bands and we avoided this complication since the single band problems
are hard enough theoretically and rich enough to explore many important open questions.
(1.1) The big questions addressed in this proposal were:

How do many interacting particles organize themselves at low temperatures? Over the years many
interesting phases have been revealed and it appears that the cold atom laboratory is ideal for finding
some new exciting phases. We explored the emergence of new phases, and performed detailed quantitative
simulations near the quantum phase transition to investigate the effects of strong repulsive and attractive
interactions, population imbalance between fermion populations and thermal and quantum fluctuations near
phase transitions. We successfully developed and applied a diverse set of numerical tools to investigate
strongly correlated fermions optical lattices and in traps near quantum phase transitions.

1



1 Research Accomplishments from ARO Grant

A summary of the highlights of results in the area of optical lattice emulators obtained by the the PIs during
the ARO grant (2008 - 2012) period have been:

• Bose superfluid-Mott insulator transition in optical lattices [1, 2]

• QMC simulations of the Fermi Hubbard model in 2D and 3D [6, 11]

• Spatially modulated FFLO pairing in spin-imbalanced fermions [3, 13]

and in strongly interacting fermions:

• BCS-BEC crossover and the unitary fermi gas [14, 9, 7]

• Contact, RF spectroscopy, and Viscosity [4, 5, 8]

• Upper branch of Feshbach resonance [10, 12]

Our ARO-funded work has had a major impact in the field. Our papers [1-15] include one publication
in Proc. Nat. Acad. Sci. [10] and 4 Phys. Rev. Letters [1, 3, 6, 11]. In addition, we were invited to write a
News and Views article in Nature Physics [9], a Perspective article to appear in Physics, and two long invited
review articles on the BCS-BEC Crossover [14] and on the Hubbard model [15]. The two PI’s have also been
recognized by invited talks at major international conferences at KITP Santa Barbara (NT), KITP Beijing
(NT), APS March Meeting (NT), INT Seattle (MR), CIFAR (MR) and Colloquiums at Harvard (MR), JILA
(MR) and the Perimeter Institute (NT).
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Figure 1: QMC plus LDA results on the 3D Fermi-Hubbard model [11]. (a) Constant-entropy curves of a
homogeneous system at half-filling There is no clear evidence for cooling as U is increased adiabatically, in
marked contrast to (b). The filled symbols are QMC values for TN ; the dashed and dotted curves are weak-
and strong-coupling asymptotic forms. (b) In a harmonic trap with Et = 3.28t, ramping up U adiabatically
produces significant cooling due to entropy redistribution. An AF state can be produced at the trap center
even for an overall entropy per particle S/N ≈ 0.65kB . (c) Average S/N in a harmonic trap below which
AF order exists at the center. This is significantly higher than the critical S/N of a homogeneous system.

1.1 Optical lattices

Entropy and Cooling in Fermi Hubbard Model:
One of the major challenges in realizing antiferromagnetic (AF) and superfluid phases in optical lattices is

the ability to cool fermions. We have used unbiased determinantal quantum Monte Carlo (QMC) simulations,
free of the fermion sign problem, to examine the relevant temperature and entropy scales for the Fermi-
Hubbard model in 2D [6] and in 3D [11]. We show [6] that an entropy per particle S/N ' ln 2 is sufficient to
observe the insulating gap in the 2D repulsive case at half-filling, or to see the pairing pseudogap in the 2D
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attractive case. Observing AF correlations or superfluidity in 2D systems requires a further reduction in S/N
by a factor of 3 or more. We also show that double-occupancy measurements are useful for thermometry for
temperatures greater than the nearest-neighbor hopping energy.

We determine the equation of state for the 3D model [11] as a function of chemical potential, temperature,
and repulsion using QMC, and use the local density approximation (LDA) to model a harmonic trap. In
Fig. 1 we show that increasing repulsion leads to cooling but only in a trap, due to the redistribution of
entropy from the center to the metallic wings. Thus, even when the average entropy per particle is larger
than that required for AF in the homogeneous system, the trap enables the formation of an AF Mott phase.
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Figure 2: (Left) 3D Fermi-Hubbard model with spin imbalance [3]: The mean-field phase diagram [3]
with U = −6t, T = 0 in the (µ, h) plane. The dashed blue line corresponds to polarization P = 0.37. Also
shown is a schematic of the corresponding shell structure in a harmonic trap within LDA. 80% of the atoms
are in the LO phase. (Right) Mapping the phase diagram of Bose Hubbard model [1]: The local
density ρh(µ(r)) (purple), compressibility κh(µ(r)) (red) and superfluid density ρhs (µ(r)) (blue) as functions
of the radial coordinate in the trap. When finite ρs develops in some portion of the trap, κ(r) shows sharp
kinks coinciding with the S-N boundary. These kinks can be used to map out the phase boundaries of the
homogeneous system.

Larkin-Ovchinnikov States for Imbalanced Fermi Gases in Optical Lattices:
The elusive Larkin-Ovchinnikov (LO) state with a modulated superfluid order parameter has long been

sought in both imbalanced Fermi gases and in solid state materials. In Ref. [3] we show that the LO phase
has a considerably larger range of stability in an optical lattice compared to the continuum. We obtain
the phase diagram for the 3D attractive Hubbard model with spin imbalance using a fully self-consistent
Bogoliubov-deGennes method. We find a strong modulation of the local polarization that should provide
a distinct signature for detection of the LO phase. The shell structure in the presence of a trap generates
singularities in the density at the phase boundaries that provide additional evidence for the LO phase.
Depending on specific parameters, the LO ground state occurs over a large range of population imbalance,
involving 80% of the atoms in the trap, and can exist up to an entropy s = 0.5kB per particle.

Bosons in Optical lattices:
Optical lattice experiments, with the unique potential of tuning interactions and density, have emerged

as emulators of nontrivial theoretical models that are directly relevant for strongly correlated materials.
Mapping out the finite temperature phase diagram for a strongly correlated quantum model remains a
challenge. In Ref. [1] we propose a remarkable method for obtaining such a phase diagram directly from
experiments using only the density profile in the trap as the input. We illustrate the procedure using
the Bose Hubbard model, a textbook example of a quantum phase transition from a superfluid to a Mott
insulator. Using exact QMC simulations in a trap with up to a 106 bosons, we show [1] that kinks in the local
compressibility, arising from critical fluctuations, demarcate the boundaries between superfluid and normal
phases in the trap. The temperature of the bosons in the optical lattice is determined from the density
profile at the edge. Our method can be applied to other phase transitions even when reliable numerical
results are not available.
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In Ref. [2], we develop a strong-coupling expansion for the momentum distribution of the Bose Hubbard
model, whose results are benchmarked against numerically exact QMC simulations in 2D and 3D and against
DMRG calculations in 1D. We expect that these analytical results will be useful for easy comparison with
experiments and can, in some cases, bypass the need for expensive numerical simulations.

1.2 Strongly Interacting Fermi Gases:

The PIs have earlier made pioneering contributions to the problem of BCS-BEC crossover starting in the
1990’s, including the prediction of the pairing pseudo gap in the strongly interacting regime. Our recent
contributions have focused on the unitary regime where the s-wave scattering length becomes infinite. In the
past few years we have obtained important results on the universal high frequency behavior of dynamical
correlations [4, 5, 8], sum rules for viscosity [8] and the role of quantum fluctuations [7]. These results are
summarized below. Our theoretical predictions [4, 5] for the back-bending in angle-resolved RF spectra
and of the Cω−3/2 tail in RF spectra have both been verified experimentally in D. Jin’s group at JILA.
Understanding the large-k back-bending in RF spectra is crucial to the proper identification of near-kF
pseudo gap, and the RF tail has been used extensively to measure the contact C.

A new direction in our research, motivated by various experiments at MIT, is that of fermions on the
repulsive branch of Feshbach resonance [10, 12]. These results are briefly mentioned below and discussed
further in Sec. 3.3, where we take up related questions in our proposed research.

RF Spectroscopy of strongly interacting fermions:
We have elucidated the universal short-distance structure of the single-particle spectral function of Fermi

gases [4] and discussed how it leads to surprising observable features in RF and angle-resolved RF experi-
ments. We show that the Tan’s universal C/k4 tail in the momentum distribution implies that the spectral
function A(k, ω) must have weight below the chemical potential, for large momentum k � kF , which can
be probed RF spectroscopy experiments. We find that this incoherent spectral weight is centered around
ω ' −ε(k) in a range of energies of order vF k. This universal “bending back” of the dispersion, while natural
for superfluids, is quite surprising for normal gases. We argue that, even in superfluid or pseudogap state,
this bending back at large k is dominated by interaction effects which do not reflect the pairing gap.

0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

Ωzt�2Π

z
Σ
�R

z

Figure 3: (Left) Universal back-bending in angle-resolved RF spectral function [4]: Logarithmic
intensity plot of A(k, ω) of a repulsive Fermi gas showing incoherent spectral weight at large k � kF
centered around ω ' −k2/2m with an integrated intensity of C/k4. (Right) Collision of spin-polarized
clouds [12]: Time dependence of the center-of-mass positions of the two clouds at unitarity, with the red
(upper) and blue (lower) curves denoting the center of mass of the two spin species. The calculation, based
on hydrodynamics with an upper branch energy functional, shows a “bounce” at small times followed by a
“phase segregation” regime, where the two center-of-masses remain at a constant separation.

Viscosity, spectral functions and sum rules:
In Ref. [8] above we gave the first derivation of sum rules for the frequency-dependent shear and bulk

viscosity spectral function in quantum fluids. These sum rules enabled us to derive several exact results
for strongly interacting Fermi gases. Notably, that the bulk viscosity in a unitary Fermi gas vanishes

4



identically for all frequencies and all temperatures. We also used our sum rules to determine the exact form
of high-frequency tails in the spectral functions and in the dynamic structure factor. Finally, we predict
that frequency-dependent shear viscosity of the unitary Fermi gas can be experimentally measured using
two-photon Bragg spectroscopy.

Sum rules are exact results valid even in regimes where strong correlations make standard calculations
unreliable. As such, they are crucial for analyzing experimental data and constraining numerical calculations.
Recently, there has been considerable interest in the viscosity of strongly interacting quantum liquids owing
to conjecture based on a string theory (AdS-CFT) calculation that the viscosity divided by entropy is
bounded from below. Only systems with very strong interactions are capable of saturating this bound.
Experimentally, it has been established that the unitary Fermi gas and the quark-gluon plasma produced at
the Relativistic Heavy-Ion collider (RHIC) are the only systems which come close to saturating this bound.
Our sum rules suggest close similarities between the unitary Fermi gas, quark-gluon plasma and the system
for which the initial AdS-CFT calculation was performed. These systems have in common the feature that
they are all strongly-interacting, with no sharp quasiparticles.

BCS-BEC crossover with unequal mass fermions:
In ref. [7], we have investigated the BCS-BEC crossover with two fermion species with different masses

M and m interacting via a Feshbach resonance. We compute the T = 0 equation of state as a function of the
scattering length, including effects of Gaussian fluctuations [16] about mean field theory. The ground state
energy as a function of M/m at unitarity is in excellent agreement with available QMC results for 40K-6Li
mixtures. The dimer scattering length in the BEC limit as a function of M/m compares well with exact
four-body results.

Strongly interacting fermions on the upper branch:
We address the question of ferromagnetism in repulsive Fermi gas, a problem of fundamental interest,

using QMC simulations that include backflow corrections [10]. We investigate a two-component Fermi gas on
the upper branch of a Feshbach resonance, motivated by recent experiments [102], and contrast it with the
text-book problem hard-sphere gas. The latter had not been solved with state of the art QMC methods until
our work [10] and ref. [107]. We find that, in both cases, the Fermi liquid becomes unstable to ferromagnetism
at a kFa smaller than the mean field result. Even though the total energies are similar in the two cases,
their pair correlations and kinetic energies are completely different, reflecting the underlying potentials. Our
analysis of the upper branch simply assumes that the system is stable, an assumption that may not be
justified by later experimental developments [103]. We propose to explore this question further as described
in detail in Sec. 3.3.

Motivated by a recent experiment at MIT [123], we consider the collision of two clouds of spin-polarized
atomic Fermi gases close to a Feshbach resonance. We explain why two dilute gas clouds, with underlying
attractive interactions between its constituents, bounce off each other in the strongly interacting regime. Our
hydrodynamic analysis, in excellent agreement with experiment, gives strong evidence for a novel metastable
many-body state with effective repulsive interactions.
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